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Abstract
For isolated rare-earth impurities substituting for Mg atoms in the
superconductor MgB2 the crystal field parameters are calculated by the ab initio
density functional electron theory with constraints for the 4f charge and spin
density. The crystal field parameter A6

6 is extremely small due to the structure
and bonding properties of MgB2, and therefore the crystal field levels are nearly
exclusively determined by one magnetic quantum number M . Implications for
the pair-breaking mechanism of the superconductivity in MgB2 are discussed.

The discovery of superconductivity close to 40 K in the binary non-oxocuprate inorganic
material MgB2 by Nagamatsu et al [1] stimulated extensive investigations aimed at achieving
an understanding of the superconducting state and increasing Tc beyond 40 K, e.g., by suitable
doping with other transition metal atoms.

MgB2 crystallizes with a hexagonal AlB2 structure type which contains planar B
honeycomb layers and close-packed Mg layers with the Mg atoms centred in the B hexagons
(see below). This structure type is also adopted by some rare-earth (RE) diboride phases MB2,
with M standing for the magnetic heavy RE metals Tb, Dy, Ho and Er but also non-magnetic
Sc and Y [2, 3]. The structural and magnetic properties of these MB2 phases were investigated
in more detail by Will and Schäfer [4] some time ago. The RE ions were all found to be
in the oxidation state 3+ with effective magnetic moments appropriate to the respective 4fn

configurations. It has been concluded that the magnetic ordering scheme is more complex
than the simple collinear ferromagnetic one and ordering temperatures up to 151 K (TbB2)
have been found [4, 5]. Low-temperature saturation magnetic moments point to a considerable
influence of crystal electric fields leading to a splitting of the respective J -manifolds and a
reduction of the ground state moments from the free-ion gJ J -values. While the effects on
the superconducting properties of MgB2 of doping with most of the possible d-metal species,
e.g. Mn, V, Cr, have been investigated in detail, it appears that doping with RE atoms has, so
far, received only little attention.
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There has been extensive research in the last few decades concerning the question of
how the properties of free ions exhibiting non-closed inner electronic shells with Hund’s rule
coupling are modified when these ions are embedded in a crystal. For the case of the transition
metal ions the crystal field interactions of the 3d electrons are often intermediate or strong, so
they cannot be treated as a perturbation and thus lead to strong modifications of the magnetic
moments (see, e.g., [6]). In contrast, the crystal field interactions of RE ions are often weak
and can be treated in a perturbative manner (at least at temperatures much larger than the
Kondo temperatures, which are of measurable size only for Ce and Yb). As a result, the
RE ions in a crystal are usually in a trivalent configuration (with the exception of Ce) which
resembles very much the Hund’s rule ground state configuration of the respective free ion with
total angular momentum J , i.e., mixing with excited multiplet states can be neglected. The
main effect of the crystal surroundings is to lift the degeneracy with respect to the magnetic
quantum number M . In ferromagnetic materials the degeneracy is dominantly lifted by the
exchange interactions, selecting the maximum M such that the exchange energy is maximum.
The crystal field interactions are then responsible for the magnetic anisotropy [7]. In contrast,
in non-magnetic materials the crystal field interactions themselves are responsible for a lifting
of the degeneracy, leading to a mixing of various |M〉 states [8] for the wavefunctions |�i〉:

|�i〉 =
∑

M

cM
i |M〉. (1)

It has been shown [9, 10] that crystal field splitting effects of RE impurities can modify
substantially the pair breaking in superconductors originally described by Abrikosov and
Gorkov [11]. Two competing mechanisms for the change of the critical temperature Tc have
been proposed. The first and usually dominant one is the exchange interaction which reduces
Tc and which may be operative even for RE dopants with non-magnetic ground states via
off-diagonal matrix elements. The second one is the inelastic charge scattering of conduction
electrons at the aspherical 4f charge density, leading to an enhancement of Tc. Both mechanisms
have an effect on Tc even for crystal field levels at energies far above kB Tc. Which mechanism
dominates depends on the symmetry character of the levels involved; in favourable cases
it may be possible to separate the two types by considering various RE impurities. The
dependence of Tc on the impurity concentration x can be calculated within the framework
of the theory of [9, 10] provided that the various crystal field states are known. Comparing
the results with experimental data could at least in principle serve as a test for the validity of
the various assumptions underlying the theory—for instance, the assumption of only s-state
superconducting pairing via a constant attractive potential V leading to an isotropic order
parameter �. Finally, it has been shown [9] that the crystal field levels of the impurities should
give rise to a structure in the superconducting tunnelling characteristics by which the crystal
field splittings can possibly be observed more directly than by most other methods.

In the present paper we calculate by means of ab initio electron theory the crystal field levels
and the crystal field states for heavy RE ions in the superconductor MgB2. Such investigations
are interesting from various viewpoints. First, in MgB2 the B atoms reside in graphite-like
honeycomb layers and the Mg atoms are above and below the centres of the B6 rings (see
above). The material is held together by strongly covalent bonds within the B layers and by
delocalized metallic-like bonding between the B layers (with a more homogeneous charge
distribution) where the Mg atoms are located. The question is how this special structure is
reflected in the values of the crystal field parameters, as compared to the respective values for
insulator-like RE ethylsulphates and RE chlorides [8] or metallic RE ferromagnets [12–14]
such as RECo5. Second, superconductivity in MgB2 originates from the coupling of the holes
in the B p x,yσ -bands to the intralayer B bond-stretching phonon modes [15]. The question
then arises of whether doping with RE impurities substituting for the Mg atoms which are
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located outside the B layers really has a significant influence on the superconducting pairing
mechanism. For the case of Mn atoms substituting for Mg, it has been demonstrated [16]
that there is indeed a strong effect on Tc. Finally, by comparing the calculated Tc(x) curves
determined on the basis of the ab initio calculated crystal field parameters with respective
experimental curves for various types of RE ion, it may be possible to learn something about
the properties of the pairing mechanism in MgB2 (see above), e.g., on the possibility of an
anisotropic gap or multiple gaps [18].

Because of the hexagonal symmetry at the RE site in MgB2 (point symmetry C3h), the
crystal field Hamiltonian ĤCF may be written as [7, 8]

ĤCF = B0
2 Ô0

2 + B0
4 Ô0

4 + B0
6 Ô0

6 + B6
6 Ô6

6 . (2)

Here the Ôm
n are the equivalent operators which are given by combinations of the components

of the operator Ĵ of the total angular momentum of the RE ion. The Bm
n are given by

Bm
n = Am

n 〈rn〉4fθJ,n, (3)

where Am
n are the crystal field parameters; 〈rn〉4f are the expectation values of rn for the

RE3+ ions; and θJ,n are the Stevens factors which are tabulated for each RE3+ ion [7, 8]. The
quantum mechanical state of the RE3+ ion in the crystal field described by ĤCF is determined
by degenerate perturbation theory based on the ansatz (1), and hence the crystal field levels
are obtained by diagonalizing the matrix 〈M|ĤCF |M ′〉. Thereby the operators Ô0

n have only
diagonal matrix elements,whereas Ô6

6 has only non-diagonal matrix elements [8]. For Kramers
ions which have half-integer values of J , the wavefunctions |�〉 in the crystal field are Kramers
doublets consisting of linear combinations of the form

|�〉 = cM+6|M + 6〉 + cM |M〉 + cM−6|M − 6〉. (4)

For non-Kramers ions with integral values of J , there is a series of doublets of the form (4)
and singlets of the form |3〉 ± |−3〉, |6〉 − |−6〉 and α(|6〉 + |−6〉) + β|0〉. The various crystal
field levels can be classified according to the irreducible representations of the point symmetry
group of the RE site [9].

In the present paper we determine the crystal field states of the RE3+ ions in MgB2 by a
procedure which is iterative in principle. In a first step we neglect the mixing of the various
M-states and assume that the RE3+ ion is in the state |J, M = J 〉 as if it was in a ferromagnetic
host. We then calculate the crystal field parameters Am

n experienced by the RE3+ ions in that
state by means of density functional electron theory in the local spin-density approximation
(LSDA [20]); see below. The non-4f states thereby feel the spin density of the RE3+ ion in the
state |J, M = J 〉 via the exchange–correlation potential of the density functional theory. In
a second step the crystal field states |�〉 are determined for the set of crystal field parameters
Am

n obtained by the procedure described above. In general, the resulting crystal field states
are different from the state |J, M = J 〉 used for the calculation of the Am

n ; for instance, they
have other spin densities. In principle, we should therefore perform a second iterative step,
starting from the respective crystal field states obtained in the first step, recalculate the crystal
field levels and repeat the procedure until convergence is achieved. In fact, it turns out that
the crystal field parameters change only slightly when going from the spin density of the state
|J, M = J 〉 to the spin density of another state. For instance, for Tb in MgB2 the crystal field
parameter A0

2 changes by less than 10% when going from the magnetic |J, M = J 〉 Tb3+ ion
to an artificial Tb3+ ion for which we switch off the magnetic moment, and the changes of the
other Am

n are negligible. We therefore confine ourselves to the first iteration step in all our
further calculations.

The crystal field parameters are determined to a very good approximation by the
electrostatic interaction of the aspherical 4f charge density ρ4f (r) with the Coulomb potential
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V (r) = ∑
n,m V m

n (r)Z m
n (θ, φ) (the Z m

n are cubic harmonics) produced by all the other charges
in the system. In this approximation the crystal field parameters are given by

Am
n = cm

n

∫
dr r2ρ4f(r)V m

n (r)∫
dr r2ρ4f(r)rn

, (5)

where the cm
n are numerical factors. In reality there is a small additional contribution to Am

n [21]
arising from the exchange–correlation potential which we have taken into account. It has been
shown by second-order perturbation theory [21–23] that for the calculation of the V m

n (r) a
spherically averaged 4f charge density ρ4f(r) has to be used instead of the strongly anisotropic
density. In equation (5) ρ4f (r) is a function which is well localized in the interior of the
atomic sphere surrounding the RE3+ ion, whereas V m

n (r) is small in the centre of the atomic
sphere and increases gradually when approaching the sphere boundary. The Am

n are therefore
determined by the small overlap of the two functions ρ4f (r) and V m

n (r) which therefore have
to be determined with extreme care. The non-4f states (which contribute to V m

n (r)) are
determined in the LSDA by the WIEN 97 code [24] which is based on the full-potential
linearized augmented-plane-wave (FLAPW) method [25]. Spurious 4f valence contributions
arising from the deficiency of the LSDA in describing the 4f states are removed by choosing
negative 4f augmentation energies [12], and the energetically high-lying 5p states of the RE3+

ion are included in the valence via local orbitals [26]. The 4f charge density ρ4f (r) is not
determined by the LSDA because of the well-known deficiency of the LSDA in handling 4f
states. Instead, we adopt the standard model of RE ions in metals [12, 27] which assumes that
the anisotropic charge density of the 4f shell is basically the same as that of a free trivalent
RE3+ ion. We therefore insert essentially [12] the 4f charge and spin density of the free RE3+

ion in the state |J, M = J 〉 as obtained by a fully relativistic Dirac–Fock calculation with
configuration interaction [28].

The calculations are performed for a supercell geometry; i.e., large supercells of MgB2

containing 95 sites and one RE atom are arranged periodically, and the structural relaxations
of the atoms around the impurity are taken into account. Table 1 compares for the case of a
Tb impurity the results for Am

n 〈rn〉4f as obtained from calculations with and without relaxation
and for various numbers of k-points used for the sampling of the irreducible Brillouin zone.
It demonstrates that in order to obtain reliable results for the crystal field parameters, it is
indispensable to perform the structural relaxation and to go beyond the 	 point approximation
for the sampling of the Brillouin zone. Basically the same behaviour as in the case of Tb was
found for Dy impurities. To obtain nearly converged results we should in principle perform
the structural relaxation and the final calculation of the Am

n with at least nine k-points in the
irreducible Brillouin zone of the 96-atom supercell. Because this is extremely costly, we
perform the calculations for the whole series of heavy RE atoms by relaxing the structure just
at the 	 point and performing the final calculation of the Am

n for the so-obtained structure for
nine k-points in the irreducible Brillouin zone.

Table 2 compiles our results for the heavy RE impurities in MgB2. In table 3 we compare
for the case of Tb (very similar results hold for all the heavy RE ions) our data with those for
the two hexagonal salts [8] RE ethylsulphate and anhydrous RE chloride and for TbCo5 [12].
Whereas A0

2〈r2〉4f and A0
4〈r4〉4f have the same sign and are of about the same size for the two

salts and for Tb in MgB2, the quantities A0
6〈r6〉4f and A6

6〈r6〉4f have different signs and are
one and two orders of magnitude smaller for the case of MgB2. Altogether, the most striking
result is the extreme smallness of A6

6〈r6〉4f for the RE impurities in MgB2, i.e., the magnetic
energy is nearly rotationally invariant around the hexagonal axis. We ascribe this finding to
an almost homogeneous charge distribution between the B layers where the RE impurities are
located (see above).
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Table 1. Results for Am
n 〈rn 〉4f in kelvins for the Tb impurity in MgB2 . The headings ‘No relaxation’

and ‘Relaxation’ indicate calculations without and with structural relaxation. The quantity ‘nkr’
is the number of k-points (for the irreducible Brillouin zone) used for the structural relaxation and
‘nk’ is the number of k-points used for the final calculation of the crystal field parameters for a
given structure. nk = 1 and nkr = 1 denote calculations at the 	 point.

Relaxation

No relaxation nkr = 1 nkr = 4 nkr = 9

nk = 1 nk = 4 nk = 9 nk = 1 nk = 4 nk = 9 nk = 4 nk = 9

A0
2〈r2〉4f 186.1 85.9 65.3 249.3 146.5 147.4 132.6 118.3

A0
4〈r4〉4f −33.7 −46.9 −44.5 −42.9 −57.2 −55.0 −56.9 −53.5

A0
6〈r6〉4f 5.4 5.0 5.0 5.1 4.8 4.8 4.3 4.3

A6
6 〈r6〉4f −9.6 −10.3 −10.6 −0.7 −1.3 −1.5 −2.0 −3.5

Table 2. Results for Am
n 〈rn 〉4f in kelvins. The calculations are for nkr = 1 and for nk = 9 (see

table 1 caption).

Tb Dy Ho Er Tm

A0
2〈r2〉4f 147.4 153.2 157.4 161.6 165.8

A0
4〈r4〉4f −55.0 −54.6 −53.8 −53.5 −52.6

A0
6〈r6〉4f 4.8 4.5 4.1 3.9 3.6

A6
6〈r6〉4f −1.5 −2.1 −3.0 −3.0 −3.5

Table 3. Comparison of Am
n 〈rn 〉4f in kelvins for Tb in various materials.

Ethylsulphate [8] Chloride [8] MgB2 TbCo5 [12]

A0
2〈r2〉4f 158.3 132.4 147.4 −254

A0
4〈r4〉4f/A0

2 〈r2〉4f −0.682 −0.435 −0.373 0.064

A0
6〈r6〉4f/A0

2〈r2〉4f −0.31 −0.326 0.033 −0.006

A6
6〈r6〉4f/A0

2 〈r2〉4f 4.23 3.15 −0.01 0.188

With the values Am
n 〈rn〉4f , the crystal field levels and the crystal field states |�〉 can be

calculated easily by means of the perturbation theory described above. Because the A6
6〈r6〉4f

are so small for the systems considered in this paper, the Hamiltonian matrix 〈M|ĤCF |M ′〉 is
nearly diagonal and hence the crystal field levels are mainly determined by one component,
|M〉 = |Mdom〉, which is determined by the actual values of A0

2, A0
4 and A0

6. For the crystal
field ground states of Tb, Dy, Ho, Er and Tm we find that the dominant |M〉 component is
|Mdom〉 = 6, 13/2, 6, 1/2 and 0, respectively. In the following we do not consider further the
Kramers ions Dy and Er with J = 15/2 for which all crystal field states are doublets and for
which exchange scattering of the valence electrons is always allowed. We concentrate on the
non-Kramers ions Tb (J = 6), Ho (J = 8) and Tm (J = 6). For them there are also singlet
crystal field levels with no elastic exchange scattering. For such systems it is conceivable
that the scattering of valence electrons is dominated by two low-lying singlet levels connected
by aspherical charge scattering with inelastic exchange scattering forbidden, with the result
that the respective RE impurities should cause an increase of Tc. Figure 1 shows the various
crystal field levels classified according to the irreducible representations of the point group of
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Figure 1. The crystal field levels for Tb, Ho and Tm impurities in MgB2. For the meanings of
the representation labels see table 3 of [9]. All ground state levels are normalized to zero energy.
Broken lines denote two crystal field levels which are nearly degenerate. The horizontal line denotes
the critical temperature of MgB2 (Tc = 39 K).

the crystal (see table 3 of [9]). For all three ions the crystal field ground state in zero field is a
non-magnetic singlet of symmetry A1 with |�〉 = α(|6〉 + |−6〉) + β|0〉. However, it becomes
obvious from the selection rules given in table 5 of [9] that in view of the symmetries of the
low-lying crystal field states the scattering of the valence electrons will always be dominated
by exchange processes. Furthermore, and even more important, the crystal field mixing of the
states |6〉, |−6〉 and |0〉 induced by the very small term A6

6 is so small that we have α � β for
Tb and Ho according to Mdom = 6 and α � β for Tm according to Mdom = 0. This means
that the crystal field interactions induced by the A6

6-term are already smaller than the Zeeman
interactions for very small magnetic fields. Therefore, for realistic experimental situations the
Tb3+ ion in MgB2 will exhibit the magnetic moment of the state |J, Mdom = 6〉 and hence
give rise to strong elastic exchange scattering of the valence states. Accordingly, in finite
magnetic fields the other RE3+ ions in MgB2 also will attain the magnetic moments of the state
|J, M = Mdom〉.

It should be noted that for the case of Ho there are many crystal field levels with excitation
energies smaller than kB Tc which should give rise to a rich structure in the superconducting
tunnelling characteristics [9], in striking contrast to the case for Tb.
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